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8

Introduction to Multilevel Models

8.1 Learning Objectives

After finishing this chapter, you should be able to:

e Recognize when response variables and covariates have been collected at
multiple (nested) levels.

o Apply exploratory data analysis techniques to multilevel data.

o Write out a multilevel statistical model, including assumptions about variance
components, in both by-level and composite forms.

 Interpret model parameters (including fixed effects and variance components)
from a multilevel model, including cases in which covariates are continuous,
categorical, or centered.

e Understand the taxonomy of models, including why we start with an uncon-
ditional means model.

e Select a final model, using criteria such as AIC, BIC, and deviance.

# Packages required for Chapter 8
library (MASS)

library(gridExtra)
library(mnormt)

library(lme4)

library (knitr)

library (kableExtra)
library(tidyverse)
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212 8 Introduction to Multilevel Models

8.2 C(Case Study: Music Performance Anxiety

Stage fright can be a serious problem for performers, and understanding the
personality underpinnings of performance anxiety is an important step in
determining how to minimize its impact. Sadler and Miller [2010] studied the
emotional state of musicians before performances and factors which may affect
their emotional state. Data was collected by having 37 undergraduate music
majors from a competitive undergraduate music program fill out diaries prior
to performances over the course of an academic year. In particular, study
participants completed a Positive Affect Negative Affect Schedule (PANAS)
before each performance. The PANAS instrument provided two key outcome
measures: negative affect (a state measure of anxiety) and positive affect (a
state measure of happiness). We will focus on negative affect as our primary
response measuring performance anxiety.

Factors which were examined for their potential relationships with performance
anxiety included: performance type (solo, large ensemble, or small ensemble);
audience (instructor, public, students, or juried); if the piece was played from
memory; age; gender; instrument (voice, orchestral, or keyboard); and, years
studying the instrument. In addition, the personalities of study participants
were assessed at baseline through the Multidimensional Personality Question-
naire (MPQ). The MPQ provided scores for one lower-order factor (absorption)
and three higher-order factors: positive emotionality (PEM—a composite of
well-being, social potency, achievement, and social closeness); negative emo-
tionality (NEM—a composite of stress reaction, alienation, and aggression);
and, constraint (a composite of control, harm avoidance, and traditionalism).

Primary scientific hypotheses of the researchers included:

o Lower music performance anxiety will be associated with lower levels of a
subject’s negative emotionality.

¢ Lower music performance anxiety will be associated with lower levels of a
subject’s stress reaction.

o Lower music performance anxiety will be associated with greater number of
years of study.
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TABLE 8.1: A snapshot of selected variables from the first three and the
last three observations in the Music Performance Anxiety case study.

Obs id diary perf type memory na gender instrument mpgab mpgpem mpgnem
1 1 1 Solo Unspecified 11 Female voice 16 52 16
2 1 2 Large Ensemble Memory 19 Female voice 16 52 16
3 1 3 Large Ensemble Memory 14  Female voice 16 52 16
495 43 2 Solo Score 13 Female voice 31 64 17
496 43 3 Small Ensemble Memory 19 Female voice 31 64 17
497 43 4 Solo Score 11 Female voice 31 64 17
I

8.3 Initial Exploratory Analyses
8.3.1 Data Organization

Our examination of the data from Sadler and Miller [2010] in musicdata.csv
will focus on the following key variables:

e id = unique musician identification number

e diary = cumulative total of diaries filled out by musician

e perf_type = type of performance (Solo, Large Ensemble, or Small Ensemble)
e audience = who attended (Instructor, Public, Students, or Juried)
e memory = performed from Memory, using Score, or Unspecified

e na = negative affect score from PANAS

o gender = musician gender

e instrument = Voice, Orchestral, or Piano

e mpgab = absorption subscale from MPQ

e mpgpem = positive emotionality (PEM) composite scale from MPQ
o mpgnem = negative emotionality (NEM) composite scale from MPQ

Sample rows containing selected variables from our data set are illustrated in
Table 8.1; note that each subject (id) has one row for each unique diary entry.

As with any statistical analysis, our first task is to explore the data, examining
distributions of individual responses and predictors using graphical and nu-
merical summaries, and beginning to discover relationships between variables.
With multilevel models, exploratory analyses must eventually account for
the level at which each variable is measured. In a two-level study such as
this one, Level One will refer to variables measured at the most frequently
occurring observational unit, while Level Two will refer to variables measured
on larger observational units. For example, in our study on music performance
anxiety, many variables are measured at every performance. These “Level One”
variables include:
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 mnegative affect (our response variable)

o performance characteristics (type, audience, if music was performed from
memory)

e number of previous performances with a diary entry

However, other variables measure characteristics of study participants that
remain constant over all performances for a particular musician; these are
considered “Level Two” variables and include:

¢ demographics (age and gender of musician)

 instrument used and number of previous years spent studying that instrument

o baseline personality assessment (MPQ measures of positive emotionality,
negative emotionality, constraint, stress reaction, and absorption)

8.3.2 Exploratory Analyses: Univariate Summaries

Because of this data structure—the assessment of some variables on a
performance-by-performance basis and others on a subject-by-subject basis—
we cannot treat our data set as consisting of 497 independent observations.
Although negative affect measures from different subjects can reasonably be
assumed to be independent (unless, perhaps, the subjects frequently perform
in the same ensemble group), negative affect measures from different perfor-
mances by the same subject are not likely to be independent. For example,
some subjects tend to have relatively high performance anxiety across all
performances, so that knowing their score for Performance 3 was 20 makes it
more likely that their score for Performance 5 is somewhere near 20 as well.
Thus, we must carefully consider our exploratory data analysis, recognizing
that certain plots and summary statistics may be useful but imperfect in light
of the correlated observations.

First, we will examine each response variable and potential covariate individu-
ally. Continuous variables can be summarized using histograms and summaries
of center and spread; categorical variables can be summarized with tables and
possibly bar charts. When examining Level One covariates and responses, we
will begin by considering all 497 observations, essentially treating each perfor-
mance by each subject as independent even though we expect observations
from the same musician to be correlated. Although these plots will contain
dependent points, since each musician provides data for up to 15 performances,
general patterns exhibited in these plots tend to be real. Alternatively, we can
calculate mean scores across all performances for each of the 37 musicians so
that we can more easily consider each plotted point to be independent. The
disadvantage of this approach would be lost information which, in a study
such as this with a relatively small number of musicians each being observed
over many performances, could be considerable. In addition, if the sample
sizes varied greatly by subject, a mean based on 1 observation would be given
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equal weight to a mean based on 15 observations. Nevertheless, both types of
exploratory plots typically illustrate similar relationships.

In Figure 8.1 we see histograms for the primary response (negative affect);
plot (a) shows all 497 (dependent) observations, while plot (b) shows the
mean negative affect for each of the 37 musicians across all their performances.
Through plot (a), we see that performance anxiety (negative affect) across
all performances follows a right-skewed distribution with a lower bound of 10
(achieved when all 10 questions are answered with a 1). Plot (b) shows that
mean negative affect is also right-skewed (although not as smoothly decreasing
in frequency), with range 12 to 23.
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FIGURE 8.1: Histogram of the continuous Level One response (negative
effect). Plot (a) contains all 497 performances across the 37 musicians, while
plot (b) contains one observation per musician (the mean negative affect across
all performances).

We can also summarize categorical Level One covariates across all (possibly
correlated) observations to get a rough relative comparison of trends. A total
of 56.1% of the 497 performances in our data set were solos, while 27.3%
were large ensembles and 16.5% were small ensembles. The most common
audience type was a public performance (41.0%), followed by instructors
(30.0%), students (20.1%), and finally juried recitals (8.9%). In 30.0% of
performances, the musician played by memory, while 55.1% used the score and
14.9% of performances were unspecified.

To generate an initial examination of Level Two covariates, we consider a data
set with just one observation per subject, since Level Two variables are constant
over all performances from the same subject. Then, we can proceed as we did
with Level One covariates—using histograms to illustrate the distributions
of continuous covariates (see Figure 8.2) and tables to summarize categorical
covariates. For example, we learn that the majority of subjects have positive
emotionality scores between 50 and 60, but that several subjects fall into a
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lengthy lower tail with scores between 20 and 50. A summary of categorical
Level Two covariates reveals that among the 37 subjects (26 female and 11
male), 17 play an orchestral instrument, 15 are vocal performers, and 5 play a
keyboard instrument.
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FIGURE 8.2: Histograms of the 3 continuous Level Two covariates (negative
emotionality (NEM), positive emotionality (PEM), and absorption). Each plot
contains one observation per musician.

8.3.3 Exploratory Analyses: Bivariate Summaries

The next step in an initial exploratory analysis is the examination of numeri-
cal and graphical summaries of relationships between model covariates and
responses. In examining these bivariate relationships, we hope to learn: (1) if
there is a general trend suggesting that as the covariate increases the response
either increases or decreases, (2) if subjects at certain levels of the covariate
tend to have similar mean responses (low variability), and (3) if the variation
in the response differs at different levels of the covariate (unequal variability).

As with individual variables, we will begin by treating all 497 performances
recorded as independent observations, even though blocks of 15 or so per-
formances were performed by the same musician. For categorical Level One
covariates, we can generate boxplots against negative affect as in Figure 8.3,
plots (a) and (b). From these boxplots, we see that lower levels of performance
anxiety seem to be associated with playing in large ensembles and playing in
front of an instructor. For our lone continuous Level One covariate (number of
previous performances), we can generate a scatterplot against negative affect
as in plot (c¢) from Figure 8.3, adding a fitted line to illustrate general trends
upward or downward. From this scatterplot, we see that negative affect seems
to decrease slightly as a subject has more experience.
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To avoid the issue of dependent observations in our three plots from Figure
8.3, we could generate separate plots for each subject and examine trends
within and across subjects. These “lattice plots” are illustrated in Figures
8.4, 8.5, and 8.6; we discuss such plots more thoroughly in Chapter 9. While
general trends are difficult to discern from these lattice plots, we can see the
variety in subjects in sample size distributions and overall level of performance
anxiety. In particular, in Figure 8.6, we notice that linear fits for many subjects
illustrate the same slight downward trend displayed in the overall scatterplot
in Figure 8.3, although some subjects experience increasing anxiety and others
exhibit non-linear trends. Having an idea of the range of individual trends will
be important when we begin to draw overall conclusions from this study.
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FIGURE 8.3: Boxplots of two categorical Level One covariates (performance
type (a) and audience type (b)) vs. model response, and scatterplot of one
continuous Level One covariate (number of previous diary entries (c)) vs. model
response (negative affect). Each plot contains one observation for each of the
497 performances.

In Figure 8.7, we use boxplots to examine the relationship between our primary
categorical Level Two covariate (instrument) and our continuous model re-
sponse. Plot (a) uses all 497 performances, while plot (b) uses one observation
per subject (the mean performance anxiety across all performances) regardless
of how many performances that subject had. Naturally, plot (b) has a more
condensed range of values, but both plots seem to support the notion that
performance anxiety is slightly lower for vocalists and maybe a bit higher for
keyboardists.

In Figure 8.8, we use scatterplots to examine the relationships between con-
tinuous Level Two covariates and our model response. Performance anxiety
appears to vary little with a subject’s positive emotionality, but there is some
evidence to suggest that performance anxiety increases with increasing nega-
tive emotionality and absorption level. Plots based on mean negative affect,
with one observation per subject, support conclusions based on plots with all
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FIGURE 8.5: Lattice plot of audience type vs. negative affect, with separate
dotplots by subject.
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FIGURE 8.6: Lattice plot of previous performances vs. negative affect, with
separate scatterplots with fitted lines by subject.
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FIGURE 8.7: Boxplots of the categorical Level Two covariate (instrument)

vs. model response (negative affect). Plot (a) is based on all 497 observations
from all 37 subjects, while plot (b) uses only one observation per subject.

observations from all subjects; indeed the overall relationships are in the same
direction and of the same magnitude.
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FIGURE 8.8: Scatterplots of continuous Level Two covariates (positive
emotionality (PEM), negative emotionality (NEM), and absorption) vs. model
response (negative affect). The top plots (al, bl, cl1) are based on all 497
observations from all 37 subjects, while the bottom plots (a2, b2, c2) use only
one observation per subject.

Of course, any graphical analysis is exploratory, and any notable trends at this
stage should be checked through formal modeling. At this point, a statistician
begins to ask familiar questions such as:

e which characteristics of individual performances are most associated with
performance anxiety?
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o which characteristics of study participants are most associated with perfor-
mance anxiety?

o are any of these associations statistically significant?

o does the significance remain after controlling for other covariates?

e how do we account for the lack of independence in performances by the same
musician?

As you might expect, answers to these questions will arise from proper consid-
eration of variability and properly identified statistical models.

8.4 Two-Level Modeling: Preliminary Considerations
8.4.1 Ignoring the Two-Level Structure (not recommended)

Armed with any statistical software package, it would be relatively simple to
take our complete data set of 497 observations and run a multiple linear least
squares regression model seeking to explain variability in negative affect with
a number of performance-level or musician-level covariates. As an example,
output from a model with two binary covariates (Does the subject play an
orchestral instrument? Was the performance a large ensemble?) is presented
below. Do you see any problems with this approach?

# Linear least square regression model with LINE conditions
modelcO <- lm(na ~ orch + large + orch:large, data = music)

## Estimate Std. Error t value Pr(>ltl)
## (Intercept) 15.7212 0.3591 43.7785 5.548e-172
## orch 1.7887 0.5516 3.2426 1.265e-03
## large -0.2767 0.7910 -0.3498 7.266e-01
## orch:large -1.7087 1.0621 -1.6088 1.083e-01

## R squared = 0.02782
## Residual standard error = 5.179

Other than somewhat skewed residuals, residual plots (not shown) do not
indicate any major problems with the LLSR model. However, another key
assumption in these models is the independence of all observations. While we
might reasonably conclude that responses from different study participants are
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independent (although possibly not if they are members of the same ensemble
group), it is not likely that the 15 or so observations taken over multiple
performances from a single subject are similarly independent. If a subject
begins with a relatively high level of anxiety (compared to other subjects)
before their first performance, chances are good that they will have relatively
high anxiety levels before subsequent performances. Thus, multiple linear least
squares regression using all 497 observations is not advisable for this study (or
multilevel data sets in general).

8.4.2 A Two-Stage Modeling Approach (better but imperfect)

If we assume that the 37 study participants can reasonably be considered to be
independent, we could use traditional linear least squares regression techniques
to analyze data from this study if we could condense each subject’s set of
responses to a single meaningful outcome. Candidates for this meaningful
outcome include a subject’s last performance anxiety measurement, average
performance anxiety, minimum anxiety level, etc. For example, in clinical
trials, data is often collected over many weekly or monthly visits for each
patient, except that many patients will drop out early for many reasons (e.g.,
lack of efficacy, side effects, personal reasons). In these cases, treatments are
frequently compared using “last-value-carried-forward” methods—the final
visit of each patient is used as the primary outcome measure, regardless of
how long they remained in the study. However, “last-value-carried-forward”
and other summary measures feel inadequate, since we end up ignoring much
of the information contained in the multiple measures for each individual. A
more powerful solution is to model performance anxiety at multiple levels.

We will begin by considering all performances by a single individual. For
instance, consider the 15 performances for which Musician #22 recorded a
diary, illustrated in Table 8.2.

Does this musician tend to have higher anxiety levels when he is playing in
a large ensemble or playing in front of fellow students? Which factor is the
biggest determinant of anxiety for a performance by Musician #227 We can
address these questions through multiple LLSR applied to only Musician #22’s
data, using appropriate indicator variables for factors of interest.

Let Ya2; be the performance anxiety score of Musician #22 before performance
j. Consider the observed performances for Musician #22 to be a random
sample of all conceivable performances by that subject. If we are initially
interested in examining the effect of playing in a large ensemble, we can model
the performance anxiety for Musician #22 according to the model:

Yoo = a2 + baoLargeEns,y; + e22; where €95 ~ N(0, 0?) and (8.1)
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TABLE 8.2: Data from the 15 performances of Musician #22.

id diary perform_ type audience na instrument
240 22 1 Solo Instructor 24 orchestral instrument
241 22 2 Large Ensemble Public Performance 21 orchestral instrument
242 22 3 Large Ensemble Public Performance 14 orchestral instrument
243 22 4 Large Ensemble Public Performance 15 orchestral instrument
244 22 5 Large Ensemble Public Performance 10 orchestral instrument
245 22 6 Solo Instructor 24 orchestral instrument
246 22 7 Solo Student(s) 24 orchestral instrument
247 22 8 Solo Instructor 16 orchestral instrument
248 22 9 Small Ensemble Public Performance 34 orchestral instrument
249 22 10 Large Ensemble Public Performance 22 orchestral instrument
250 22 11 Large Ensemble Public Performance 19 orchestral instrument
251 22 12 Large Ensemble Public Performance 18 orchestral instrument
252 22 13 Large Ensemble Public Performance 12 orchestral instrument
253 22 14 Large Ensemble Public Performance 19 orchestral instrument
254 22 15 Solo Instructor 25 orchestral instrument

1 if perf-type = Large Ensemble

LargeEns; =
argelns; {0 if perf-type = Solo or Small Ensemble

The parameters in this model (a2, bag, and 02) can be estimated through
least squares methods. aqo represents the true intercept for Musician #22—the
expected anxiety score for Musician #22 when performance type is a Solo or
Small Ensemble (LargeEns = 0), or the true average anxiety for Musician #22
over all Solo or Small Ensemble performances he may conceivably give. bay
represents the true slope for Musician #22—the expected increase in perfor-
mance anxiety for Musician #22 when performing as part of a Large Ensemble
rather than in a Small Ensemble or as a Solo, or the true average difference
in anxiety scores for Musician #22 between Large Ensemble performances
and other types. Finally, the es2; terms represent the deviations of Musician
#22’s actual performance anxiety scores from the expected scores under this
model—the part of Musician #22’s anxiety before performance j that is not
explained by performance type. The variability in these deviations from the
regression model is denoted by o2.

For Subject 22, we estimate doy = 24.5, byy = —7.8, and 6 = 4.8. Thus,
according to our simple linear regression model, Subject 22 had an estimated
anxiety score of 24.5 before Solo and Small Ensemble performances, and 16.7
(7.8 points lower) before Large Ensemble performances. With an R? of 0.425,
the regression model explains a moderate amount (42.5%) of the performance-
to-performance variability in anxiety scores for Subject 22, and the trend
toward lower scores for large ensemble performances is statistically significant
at the 0.05 level (t(13)=-3.10, p=.009).
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regr.id22 = lm(na ~ large, data = id22)

#it Estimate Std. Error t value Pr(>|tl)
## (Intercept)  24.500 1.96 12.503 1.275e-08
## large -7.833 2.53 -3.097 8.504e-03

## R squared = 0.4245
## Residual standard error = 4.8

We could continue trying to build a better model for Subject 22, adding
indicators for audience and memory, and even adding a continuous variable
representing the number of previous performances where a diary was kept.
As our model R-squared value increased, we would be explaining a larger
proportion of Subject 22’s performance-to-performance variability in anxiety.
It would not, however, improve our model to incorporate predictors for age,
gender, or even negative emotionality based on the MPQ—why is that?

For the present time, we will model Subject 22’s anxiety scores for his 15
performances using the model given by Equation (8.1), with a lone indicator
variable for performing in a Large Ensemble. We can then proceed to fit the
LLSR model in Equation (8.1) to examine the effect of performing in a Large
Ensemble for each of the 37 subjects in this study. These are called Level One
models. As displayed in Figure 8.9, there is considerable variability in the
fitted intercepts and slopes among the 37 subjects. Mean performance anxiety
scores for Solos and Small Ensembles range from 11.6 to 24.5, with a median
score of 16.7, while mean differences in performance anxiety scores for Large
Ensembles compared to Solos and Small Ensembles range from -7.9 to 5.0, with
a median difference of -1.7. Can these differences among individual musicians
be explained by (performance-invariant) characteristics associated with each
individual, such as gender, age, instrument, years studied, or baseline levels of
personality measures? Questions like these can be addressed through further
statistical modeling.

As an illustration, we can consider whether or not there are significant rela-
tionships between individual regression parameters (intercepts and slopes) and
instrument played. From a modeling perspective, we would build a system of
two Level Two models to predict the fitted intercept (a;) and fitted slopes
(b;) for Subject i:

a; = ag + o1 Orch; + u; (8.2)
bi = ﬂo + ﬁlorchi + v; (83)
where Orch; = 1 if Subject 4 plays an orchestral instrument and Orch; = 0 if

Subject ¢ plays keyboard or is a vocalist. Note that, at Level Two, our response
variables are not observed measurements such as performance anxiety scores,
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FIGURE 8.9: Histograms of intercepts and slopes from fitting simple regres-
sion models by subject, where each model contained a single binary predictor
indicating if a performance was part of a large ensemble.

but rather the fitted regression coefficients from the Level One models fit to
each subject. (Well, in our theoretical model, the responses are actually the
true intercepts and slopes from Level One models for each subject, but in
reality, we have to use our estimated slopes and intercepts.)

Exploratory data analysis (see boxplots by instrument in Figure 8.10) suggests
that subjects playing orchestral instruments have higher intercepts than vocal-
ists or keyboardists, and that orchestral instruments are associated with slightly
lower (more negative) slopes, although with less variability that the slopes of
vocalists and keyboardists. These trends are borne out in regression modeling.
If we fit Equations (8.2) and (8.3) using fitted intercepts and slopes as our
response variables, we obtain the following estimated parameters: ¢y = 16.3,
61 =14, Bp = —0.8, and 3; = —1.4. Thus, the intercept (a;) and slope (b;)
for Subject ¢ can be modeled as:

a; = 16.3 + 1.40rch; + u; (84)
b; = —0.8 — 1.40rch; + v;

where a; is the true mean negative affect when Subject i is playing solos
or small ensembles, and b; is the true mean difference in negative affect for
Subject i between large ensembles and other performance types. Based on
these models, average performance anxiety before solos and small ensembles is
16.3 for vocalists and keyboardists, but 17.7 (1.4 points higher) for orchestral
instrumentalists. Before playing in large ensembles, vocalists and instrumen-
talists have performance anxiety (15.5) which is 0.8 points lower, on average,
than before solos and small ensembles, while subjects playing orchestral in-
struments experience an average difference of 2.2 points, producing an average
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performance anxiety of 15.5 before playing in large ensembles just like sub-
jects playing other instruments. However, the difference between orchestral
instruments and others does not appear to be statistically significant for either
intercepts (t=1.424, p=0.163) or slopes (t=-1.168, p=0.253).
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FIGURE 8.10: Boxplots of fitted intercepts, plot (a), and slopes, plot (b),
by orchestral instrument (1) vs. keyboard or vocalist (0).

This two-stage modeling process does have some drawbacks. Among other
things, (1) it weights every subject the same regardless of the number of diary
entries we have, (2) it responds to missing individual slopes (from 7 subjects
who never performed in a large ensemble) by simply dropping those subjects,
and (3) it does not share strength effectively across individuals. These issues
can be better handled through a unified multilevel modeling framework which
we will develop in the next section.

8.5 Two-Level Modeling: A Unified Approach
8.5.1 Owur Framework

For the unified approach, we will still envision two levels of models as in Section
8.4.2, but we will use likelihood-based methods for parameter estimation rather
than ordinary least squares to address the drawbacks associated with the two-
stage approach. To illustrate the unified approach, we will first generalize the
models presented in Section 8.4.2. Let Y;; be the performance anxiety score of
the i*" subject before performance j. If we are initially interested in examining
the effects of playing in a large ensemble and playing an orchestral instrument,
then we can model the performance anxiety for Subject ¢ in performance j
with the following system of equations:
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e Level One:
ever e Yi; =a; + biLargeEnsZ-j + €5

e Level Two:
a; = ag + a1 0rch; + u;

b; = Bo + B10rch; + v;,

In this system, there are 4 key fixed effects to estimate: ag, a1, B9 and ;.
Fixed effects are the fixed but unknown population effects associated with
certain covariates. The intercepts and slopes for each subject from Level One,
a; and b;, don’t need to be formally estimated as we did in Section 8.4.2;
they serve to conceptually connect Level One with Level Two. In fact, by
substituting the two Level Two equations into the Level One equation, we can
view this two-level system of models as a single Composite Model without
a; and b;:

Yij = lao + a;Orch; + foLargeEns;; + 41 Orch;LargeEns, ;]
+ [u; + v;LargeEns,; + €;;]

From this point forward, when building multilevel models, we will use Greek
letters (such as ag) to denote final fixed effects model parameters to be
estimated empirically, and Roman letters (such as ag) to denote preliminary
fixed effects parameters at lower levels. Variance components that will be
estimated empirically will be denoted with o or p, while terms such as € and
u; represent error terms. In our framework, we can estimate final parameters
directly without first estimating preliminary parameters, which can be seen
with the Composite Model formulation (although we can obtain estimates of
preliminary parameters in those occasional cases when they are of interest to
us). Note that when we model a slope term like b; from Level One using Level
Two covariates like Orch;, the resulting Composite Model contains a cross-
level interaction term, denoting that the effect of LargeEns,; depends on
the instrument played.

Furthermore, with a binary predictor at Level Two such as instrument, we can
write out what our Level Two model looks like for those who play keyboard or
are vocalists (Orch; = 0) and those who play orchestral instruments (Orch; =

1):
o Keyboardists and Vocalists (Orch; = 0)

a; = g + u;
bi = Bo + vi

o Orchestral Instrumentalists (Orch; = 1)

a; = (g + ar) +uy
bi = (Bo+B1) +ui
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Writing the Level Two model in this manner helps us interpret the model
parameters from our two-level model. In this case, even the Level One covariate
is binary, so that we can write out expressions for mean performance anxiety
based on our model for four different combinations of instrument played and
performance type:

o Keyboardists or vocalists playing solos or small ensembles: aq

o Keyboardists or vocalists playing large ensembles: ag + 5o

e Orchestral instrumentalists playing solos or small ensembles: g + a1
e Orchestral instrumentalists playing large ensembles: o + a1 + Bo + 51

8.5.2 Random vs. Fixed Effects

Before we can use likelihood-based methods to estimate our model parameters,
we still must define the distributions of our error terms. The error terms e;;,
u;, and v; represent random effects in our model. In multilevel models, it is
important to distinguish between fixed and random effects. Typically, fixed
effects describe levels of a factor that we are specifically interested in drawing
inferences about, and which would not change in replications of the study. For
example, in our music performance anxiety case study, the levels of performance
type will most likely remain as solos, small ensembles, and large ensembles even
in replications of the study, and we wish to draw specific conclusions about
differences between these three types of performances. Thus, performance type
would be considered a fixed effect. On the other hand, random effects describe
levels of a factor which can be thought of as a sample from a larger population
of factor levels; we are not typically interested in drawing conclusions about
specific levels of a random effect, although we are interested in accounting
for the influence of the random effect in our model. For example, in our case
study, the different musicians included can be thought of as a random sample
from a population of performing musicians. Although our goal is not to make
specific conclusions about differences between any two musicians, we do want
to account for inherent differences among musicians in our model, and by doing
so, we will be able to draw more precise conclusions about our fixed effects of
interest. Thus, musician would be considered a random effect.

8.5.3 Distribution of Errors: Multivariate Normal

As part of our multilevel model, we must provide probability distributions to
describe the behavior of random effects. Typically, we assume that random
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effects follow a normal distribution with mean 0 and a variance parameter which
must be estimated from the data. For example, at Level One, we will assume
that the errors associated with each performance of a particular musician
can be described as: €;; ~ N(0,0?). At Level Two, we have one error term
(u;) associated with subject-to-subject differences in intercepts, and one error
term (v;) associated with subject-to-subject differences in slopes. That is,
u; represents the deviation of Subject ¢ from the mean performance anxiety
before solos and small ensembles after accounting for their instrument, and v;
represents the deviation of Subject ¢ from the mean difference in performance
anxiety between large ensembles and other performance types after accounting
for their instrument.

In modeling the random behavior of u; and v;, we must also account for the
possibility that random effects at the same level might be correlated. Subjects
with higher baseline performance anxiety have a greater capacity for showing
decreased anxiety in large ensembles as compared to solos and small ensembles,
so we might expect that subjects with larger intercepts (performance anxiety
before solos and small ensembles) would have smaller slopes (indicating greater
decreases in anxiety before large ensembles). In fact, our fitted Level One
intercepts and slopes in this example actually show evidence of a fairly strong
negative correlation (r = —0.525, see Figure 8.11).

Fitted slopes

Fitted intercepts

FIGURE 8.11: Scatterplot with fitted regression line for estimated intercepts
and slopes (one point per subject).

To allow for this correlation, the error terms at Level Two can be assumed to
follow a multivariate normal distribution in our unified multilevel model.
Mathematically, we can express this as:

Us 0 Ui PuvOuOy
R R (KA R PR

where o2 is the variance of the u; terms, o2 is the variance of the v; terms,
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and o,y = pPuy0yu0y, is the covariance between the u; and the v; terms (i.e.,
how those two terms vary together).

Note that the correlation p,, between the error terms is simply the covariance
Ouv = PuvTu0y converted to a [—1,1] scale through the relationship:

O-’LL’U

Puv =
OuOvy

With this expression, we are allowing each error term to have its own variance
(around a mean of 0) and each pair of error terms to have its own covariance
(or correlation). Thus, if there are n equations at Level Two, we can have n
variance terms and n(n — 1)/2 covariance terms for a total of n +n(n —1)/2
variance components. These variance components are organized in matrix
form, with variance terms along the diagonal and covariance terms in the
off-diagonal. In our small example, we have n = 2 equations at Level Two, so
we have 3 variance components to estimate—2 variance terms (02 and ¢2) and
1 correlation (pyy)-

The multivariate normal distribution with n = 2 is illustrated in Figure 8.12
for two cases: (a) the error terms are uncorrelated (o, = puy = 0), and (b)
the error terms are positively correlated (o4, > 0 and py, > 0). In general, if
the errors in intercepts (u;) are placed on the x-axis and the errors in slopes
(v;) are placed on the y-axis, then o2 measures spread in the x-direction and
02 measures spread in the y-direction, while o,, measures tilt. Positive tilt
(0w > 0) indicates a tendency for errors from the same subject to both be
positive or both be negative, while negative tilt (o4, < 0) indicates a tendency
for one error from a subject to be positive and the other to be negative. In
Figure 8.12, 02 = 4 and 02 = 1, so both contour plots show a greater range of
errors in the x-direction than the y-direction. Ellipses near the center of the
contour plot indicate pairs of u; and v; that are more likely. In Figure 8.12
(a) owy = puv = 0, so the axes of the contour plot correspond to the x- and
y-axes, but in Figure 8.12 (b) o4, = 1.5, so the contour plot tilts up, reflecting
a tendency for high values of u; to be associated with high values of v;.

8.5.4 Technical Issues when Testing Parameters (optional)

Now, our relatively simple two-level model has 8 parameters that need to be
estimated: 4 fixed effects (ag, a1, fo, and B;), and 4 variance components
(0%, 02, 02, and 0,,). Note that we use the term variance components
to signify model parameters that describe the behavior of random effects.
We can use statistical software, such as the lmer() function from the lme4
package in R, to obtain parameter estimates using our 497 observations. The
most common methods for estimating model parameters—both fixed effects
and variance components—are maximum likelihood (ML) and restricted

maximum likelihood (REML). The method of ML was introduced in
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(a) (b)

u u

FIGURE 8.12: Contour plots illustrating a multivariate normal density with
(a) no correlation between error terms, and (b) positive correlation between
error terms.

Chapter 2, where parameter estimates are chosen to maximize the value of the
likelihood function based on observed data. REML is conditional on the fixed
effects, so that the part of the data used for estimating variance components
is separated from that used for estimating fixed effects. Thus REML, by
accounting for the loss in degrees of freedom from estimating the fixed effects,
provides an unbiased estimate of variance components, while ML estimators
for variance components are biased under assumptions of normality, since they
use estimated fixed effects rather than the true values. REML is preferable
when the number of parameters is large or the primary interest is obtaining
estimates of model parameters, either fixed effects or variance components
associated with random effects. ML should be used if nested fixed effects
models are being compared using a likelihood ratio test, although REML is
fine for nested models of random effects (with the same fixed effects model).
In this text, we will typically report REML estimates unless we are specifically
comparing nested models with the same random effects. In most case studies
and most models we consider, there is very little difference between ML and
REML parameter estimates. Additional details are beyond the scope of this
book [Singer and Willett, 2003].

Note that the multilevel output shown beginning in the next section contains
no p-values for performing hypothesis tests. This is primarily because the exact
distribution of the test statistics under the null hypothesis (no fixed effect) is
unknown, primarily because the exact degrees of freedom is not known [Bates
et al., 2015]. Finding good approximate distributions for test statistics (and thus
good approximate p-values) in multilevel models is an area of active research. In
most cases, we can simply conclude that t-values (ratios of parameter estimates
to estimated standard errors) with absolute value above 2 indicate significant
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evidence that a particular model parameter is different than 0. Certain software
packages will report p-values corresponding to hypothesis tests for parameters
of fixed effects; these packages are typically using conservative assumptions,
large-sample results, or approximate degrees of freedom for a t-distribution. In
Section 1.6.5, we introduced the bootstrap as a non-parametric, computational
approach for producing confidence intervals for model parameters. In addition,
in Section 9.6.4, we will introduce a method called the parametric bootstrap
which is being used more frequently by researchers to better approximate the
distribution of the likelihood test statistic and produce more accurate p-values
by simulating data under the null hypothesis [Efron, 2012].

8.5.5 An Initial Model with Parameter Interpretations

The output below contains likelihood-based estimates of our 8 parameters from
a two-level model applied to the music performance anxiety data:

Linear mixed model fit by REML ['lmerMod']
A) Formula: na ~ orch + large + orch:large + (large | id)
Data: music
B) REML criterion at convergence: 2987

B2) AIC BIC logLik deviance df.resid
3007 3041 -1496 2991 489

Random effects:

Groups  Name Variance Std.Dev. Corr
c) id (Intercept) 5.655 2.378
D) large 0.452 0.672 -0.63
E) Residual 21.807 4.670

F) Number of obs: 497, groups: id, 37

Fixed effects:
Estimate Std. Error t value

G) (Intercept) 15.930 0.641 24.83
H) orch 1.693 0.945 1.79
I) 1large -0.911 0.845 -1.08
J) orch:large -1.424 1.099 -1.30

This output (except for the capital letters along the left column) was specifically
generated by the lmer() function in R; multilevel modeling results from other
packages will contain similar elements. Because we will use lmer() output to
summarize analyses of case studies in this and following sections, we will spend
a little time now orienting ourselves to the most important features in this
output.
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e A: How our multilevel model is written in R, based on the composite model
formulation. For more details, see Section 8.12.

o B: Measures of model performance. Since this model was fit using REML,
this line only contains the REML criterion.

o B2: If the model is fit with ML instead of REML, the measures of performance
will contain AIC, BIC, deviance, and the log-likelihood.

 C: Estimated variance components (62 and &) associated with the intercept
equation in Level Two.

e D: Estimated variance components (62 and &,) associated with the large
ensemble effect equation in Level Two, along with the estimated correlation
(Puv) between the two Level Two error terms.

o E: Estimated variance components (62 and &) associated with the Level One
equation.

e F: Total number of performances where data was collected (Level One
observations = 497) and total number of subjects (Level Two observations =
37).

o G: Estimated fixed effect (&) for the intercept term, along with its standard
error and t-value (which is the ratio of the estimated coefficient to its standard
error). As described in Section 8.5.4, no p-value testing the significance of
the coefficient is provided because the exact null distribution of the t-value
is unknown.

o H: Estimated fixed effect (&7) for the orchestral instrument effect, along with
its standard error and t-value.

o I: Estimated fixed effect (,5’0) for the large ensemble effect, along with its
standard error and t-value.

« J: Estimated fixed effect (j3;) for the interaction between orchestral instru-
ments and large ensembles, along with its standard error and t-value.

Assuming the 37 musicians in this study are representative of a larger popula-
tion of musicians, parameter interpretations for our 8 model parameters are
given below:

o Fixed effects:

— &p = 15.9. The estimated mean performance anxiety for solos and small
ensembles (Large=0) for keyboard players and vocalists (Orch=0) is
15.9.

— &1 = 1.7. Orchestral instrumentalists have an estimated mean perfor-
mance anxiety for solos and small ensembles which is 1.7 points higher
than keyboard players and vocalists.

— By = —0.9. Keyboard players and vocalists have an estimated mean
decrease in performance anxiety of 0.9 points when playing in large
ensembles instead of solos or small ensembles.

— 31 = —1.4. Orchestral instrumentalists have an estimated mean decrease
in performance anxiety of 2.3 points when playing in large ensembles
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TABLE 8.3: Comparison of estimated coefficients and standard errors from
the approaches mentioned in this section.

Variable Independence TwoStage LVCF Multilevel
Intercept 15.72(0.36) 16.28(0.67) 15.20(1.25) 15.93(0.64)
Orch 1.79(0.55) 1.41(0.99) 1.45(1.84)  1.69(0.95)
Large -0.28(0.79) -0.77(0.85) - -0.91(0.85)
Orch*Large -1.71(1.06) -1.41(1.20) - -1.42(1.10)

instead of solos or small ensembles, 1.4 points greater than the mean
decrease among keyboard players and vocalists.
e Variance components

— 6, = 2.4. The estimated standard deviation of performance anxiety
levels for solos and small ensembles is 2.4 points, after controlling for
instrument played.

— &, = 0.7. The estimated standard deviation of differences in performance
anxiety levels between large ensembles and other performance types is
0.7 points, after controlling for instrument played.

— puv = —0.64. The estimated correlation between performance anxiety
scores for solos and small ensembles and increases in performance anxiety
for large ensembles is -0.64, after controlling for instrument played. Those
subjects with higher performance anxiety scores for solos and small
ensembles tend to have greater decreases in performance anxiety for
large ensemble performances.

— & = 4.7. The estimated standard deviation in residuals for the individual
regression models is 4.7 points.

Table 8.3 shows a side-by-side comparison of estimated coefficients from the
approaches described to this point. Underlying assumptions, especially regard-
ing the error and correlation structure, differ, and differences in estimated
effects are potentially meaningful. Note that some standard errors are greatly
underestimated under independence, and that no Level One covariates (such as
performance type) can be analyzed under a method such as last-visit-carried-
forward which uses one observation per subject. Moving forward, we will
employ the unified multilevel approach to maximize the information being
used to estimate model parameters and to remain faithful to the structure of
the data.

Two-level modeling as done with the music performance anxiety data usually
involves fitting a number of models. Subsequent sections will describe a process
of starting with the simplest two-level models and building toward a final
model which addresses the research questions of interest.
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8.6 Building a Multilevel Model
8.6.1 Model Building Strategy

Initially, it is advisable to first fit some simple, preliminary models, in part to
establish a baseline for evaluating larger models. Then, we can build toward
a final model for description and inference by attempting to add important
covariates, centering certain variables, and checking model assumptions. In this
study, we are particularly interested in Level Two covariates—those subject-
specific variables that provide insight into why individuals react differently
in anxiety-inducing situations. To get more precise estimates of the effect of
Level Two covariates, we also want to control for Level One covariates that
describe differences in individual performances.

Our strategy for building multilevel models will begin with extensive ex-
ploratory data analysis at each level. Then, after examining models with no
predictors to assess variability at each level, we will first focus on creating a
Level One model, starting simple and adding terms as necessary. Next, we
will move to Level Two models, again starting simple and adding terms as
necessary, beginning with the equation for the intercept term. Finally, we will
examine the random effects and variance components, beginning with a full set
of error terms and then removing covariance terms and variance terms where
advisable (for instance, when parameter estimates are failing to converge or
producing impossible or unlikely values). This strategy follows closely with
that described by Raudenbush and Bryk [2002] and used by Singer and Willett
[2003]. Singer and Willett further find that the modeled error structure rarely
matters in practical contexts. Other model building approaches are certainly
possible. Diggle et al. [2002], for example, begins with a saturated fixed effects
model, determines variance components based on that, and then simplifies the
fixed part of the model after fixing the random part.

8.6.2 An Initial Model: Random Intercepts

The first model fit in almost any multilevel context should be the uncon-
ditional means model, also called a random intercepts model. In this
model, there are no predictors at either level; rather, the purpose of the un-
conditional means model is to assess the amount of variation at each level—to
compare variability within subject to variability between subjects. Expanded
models will then attempt to explain sources of between and within subject
variability.

The unconditional means (random intercepts) model, which we will denote as
Model A, can be specified either using formulations at both levels:
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o Level One:
eve ne Y;'j =a; + €ij where €ij ™~ N(O,Uz)

e Level Two:
ever 2o a; = o + u; where u; ~ N(0,02)

or as a composite model:
Yij=a0+ui+¢;

In this model, the performance anxiety scores of subject ¢ are not a function of
performance type or any other Level One covariate, so that a; is the true mean
response of all observations for subject ¢. On the other hand, «aq is the grand
mean — the true mean of all observations across the entire population. Our
primary interest in the unconditional means model is the variance components
— 02 is the within-person variability, while o2 is the between-person variability.
The name random intercepts model then arises from the Level Two equation
for a;: each subject’s intercept is assumed to be a random value from a normal
distribution centered at ag with variance 2.

Using the composite model specification, the unconditional means model can
be fit to the music performance anxiety data using statistical software:

#Model A (Unconditional means model)
model.a <- Ilmer(na ~ 1 + (1 | id), REML = T, data = music)

## Groups  Name Variance Std.Dev.
##  id (Intercept) 4.95 2.22
## Residual 22.46 4.74

## Number of Level Two groups = 37

## Estimate Std. Error t value
## (Intercept) 16.24 0.4279 37.94

From this output, we obtain estimates of our three model parameters:

e &9 = 16.2 = the estimated mean performance anxiety score across all
performances and all subjects.

e 62 =225 = the estimated variance in within-person deviations.

e 62 =5.0 = the estimated variance in between-person deviations.

The relative levels of between- and within-person variabilities can be compared
through the intraclass correlation coefficient:
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Between-person variability 52 B 5.0 — 182
Total variability 624462 504225 7

p=

Thus, 18.2% of the total variability in performance anxiety scores are at-
tributable to differences among subjects. In this particular model, we can also
say that the average correlation for any pair of responses from the same individ-
ual is a moderately low .182. As p approaches 0, responses from an individual
are essentially independent and accounting for the multilevel structure of the
data becomes less crucial. However, as p approaches 1, repeated observations
from the same individual essentially provide no additional information and
accounting for the multilevel structure becomes very important. With p near 0,
the effective sample size (the number of independent pieces of information
we have for modeling) approaches the total number of observations, while with
p near 1, the effective sample size approaches the number of subjects in the
study.

8.7 Binary Covariates at Level One and Level Two
8.7.1 Random Slopes and Intercepts Model

The next step in model fitting is to build a good model for predicting per-
formance anxiety scores at Level One (within subject). We will add poten-
tially meaningful Level One covariates—those that vary from performance-
to-performance for each individual. In this case, mirroring our model from
Section 8.4 we will include a binary covariate for performance type:

1 if perf-type = Large Ensemble

LargeEns,, =
FEOEIS {0 if perf-type = Solo or Small Ensemble

and no other Level One covariates (for now). (Note that we may later also want
to include an indicator variable for “Small Ensemble” to separate the effects of
Solo performances and Small Ensemble performances.) The resulting model,
which we will denote as Model B, can be specified either using formulations at
both levels:

e Level One:
ever e Yi; = a; + b;LargeEns;; + €;;

e Level Two:
a; = Qo =+ u;

bi = Po + v

or as a composite model:
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Yij = [ao + foLargeEns, ;] + [u; + v;LargeEns,; + €;]

where €;; ~ N(0,0?%) and

(B L))

as discussed in Section 8.5.3.

In this model, performance anxiety scores for subject i are assumed to differ
(on average) for Large Ensemble performances as compared with Solos and
Small Ensemble performances; the €;; terms capture the deviation between the
true performance anxiety levels for subjects (based on performance type) and
their observed anxiety levels. aq is then the true mean performance anxiety
level for Solos and Small Ensembles, and Sy is the true mean difference in
performance anxiety for Large Ensembles compared to other performance types.
As before, 02 quantifies the within-person variability (the scatter of points
around individuals’ means by performance type), while now the between-person
variability is partitioned into variability in Solo and Small Ensemble scores
(%) and variability in differences with Large Ensembles (02).

Using the composite model specification, Model B can be fit to the music

performance anxiety data, producing the following output:

#Model B (Add large as Level 1 cowvariate)
model.b <- lmer(na ~ large + (large | id), data = music)

## Groups  Name Variance Std.Dev. Corr
##  id (Intercept) 6.333 2.517

## large 0.743 0.862 -0.76
## Residual 21.771 4.666

## Number of Level Two groups = 37

## Estimate Std. Error t value
## (Intercept) 16.730 0.4908 34.09
## large -1.676 0.5425  -3.09

From this output, we obtain estimates of our six model parameters (2 fixed
effects and 4 variance components):

e G4y = 16.7 = the mean performance anxiety level before solos and small
ensemble performances.
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. BO = —1.7 = the mean decrease in performance anxiety before large ensemble
performances.

e 62 = 21.8 = the variance in within-person deviations.

e 62 = 6.3 = the variance in between-person deviations in performance anxiety
scores before solos and small ensembles.

¢ 62 = 0.7 = the variance in between-person deviations in increases (or
decreases) in performance anxiety scores before large ensembles.
o puy = —0.76 = the correlation in subjects’ anxiety before solos and small

ensembles and their differences in anxiety between large ensembles and other
performance types.

We see that, on average, subjects had a performance anxiety level of 16.7 before
solos and small ensembles, and their anxiety levels were 1.7 points lower, on
average, before large ensembles, producing an average performance anxiety
level before large ensembles of 15.0. According to the t-value listed in R, the
difference between large ensembles and other performance types is statistically
significant (t=-3.09).

This random slopes and intercepts model is illustrated in Figure 8.13. The
thicker black line shows the overall trends given by our estimated fixed effects:
an intercept of 16.7 and a slope of -1.7. Then, each subject is represented by a
gray line. Not only do the subjects’ intercepts differ (with variance 6.3), but
their slopes differ as well (with variance 0.7). Additionally, subjects’ slopes and
intercepts are negatively associated (with correlation -0.76), so that subjects
with greater intercepts tend to have steeper negative slopes. We can compare
this model with the random intercepts model from Section 8.6.2, pictured in
Figure 8.14. With no effect of large ensembles, each subject is represented by
a gray line with identical slopes (0) but varying intercepts (with variance 5.0).

Negative Affect

Large Ensemble indicator

FIGURE 8.13: The random slopes and intercepts model fitted to the music
performance anxiety data. Each gray line represents one subject, and the
thicker black line represents the trend across all subjects.
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Negative Affect

Large Ensemble indicator

FIGURE 8.14: The random intercepts model fitted to the music performance
anxiety data. Each gray line represents one subject, and the thicker black line
represents the trend across all subjects.

Figures 8.13 and 8.14 use empirical Bayes estimates for the intercepts (a;)
and slopes (b;) of individual subjects. Empirical Bayes estimates are sometimes
called “shrinkage estimates” since they combine individual-specific information
with information from all subjects, thus “shrinking” the individual estimates
toward the group averages. Empirical Bayes estimates are often used when a
term such as a; involves both fixed and random components; further detail
can be found in Raudenbush and Bryk [2002] and Singer and Willett [2003].

8.7.2 Pseudo R-squared Values

The estimated within-person variance 62 decreased by 3.1% (from 22.5 to 21.8)
from the unconditional means model, implying that only 3.1% of within-person
variability in performance anxiety scores can be explained by performance
type. This calculation is considered a pseudo R-squared value:

6%(Model A) — 6%(Model B)  22.5 —21.8

Pseudo R?, = =
Seudo i 52(Model A) 225

= 0.031

Values of 62 and 62 from Model B cannot be compared to between-person vari-
ability from Model A, since the inclusion of performance type has changed the
interpretation of these values, although they can provide important benchmarks
for evaluating more complex Level Two predictions. Finally, p,, = —0.76 indi-
cates a strong negative relationship between a subject’s performance anxiety
before solos and small ensembles and their (typical) decrease in performance
anxiety before large ensembles. As might be expected, subjects with higher
levels of performance anxiety before solos and small ensembles tend to have
smaller increases (or greater decreases) in performance anxiety before large
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ensembles; those with higher levels of performance anxiety before solos and
small ensembles have more opportunity for decreases before large ensembles.

Pseudo R-squared values are not universally reliable as measures of model
performance. Because of the complexity of estimating fixed effects and variance
components at various levels of a multilevel model, it is not unusual to encounter
situations in which covariates in a Level Two equation for, say, the intercept
remain constant (while other aspects of the model change), yet the associated
pseudo R-squared values differ or are negative. For this reason, pseudo R-
squared values in multilevel models should be interpreted cautiously.

8.7.3 Adding a Covariate at Level Two

The initial two-level model described in Section 8.5.5 essentially expands upon
the random slopes and intercepts model by adding a binary covariate for
instrument played at Level Two. We will denote this as Model C:

e Level One:
) Yij = a; + b;LargeEns;; + €;;

e Level Two:
ever Awo a; = ag + a1 0rch; + u;

b; = By + B10rch; + v;,

where €;; ~ N(0,0?) and

()L 2 ])

We found that there are no highly significant fixed effects in Model C (other
than the intercept). In particular, we have no significant evidence that musicians
playing orchestral instruments reported different performance anxiety scores,
on average, for solos and small ensembles than keyboardists and vocalists,
no evidence of a difference in performance anxiety by performance type for
keyboard players and vocalists, and no evidence of an instrument effect in
difference between large ensembles and other types.

Since no terms were added at Level One when expanding from the random
slopes and intercepts model (Model B), no discernible changes should occur
in explained within-person variability (although small changes could occur
due to numerical estimation procedures used in likelihood-based parameter
estimates). However, Model C expanded Model B by using the instrument
which a subject plays to model both intercepts and slopes at Level Two. We
can use pseudo R-squared values for both intercepts and slopes to evaluate
the impact on between-person variability of adding instrument to Model B.
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&2(Model B) — 62(Model C)  6.33 — 5.66

= =0.1
52 (Model B) 633 100

2 _
Pseudo Rj, =

52(Model B) — 62(Model C) _ 0.74 — 0.45

= = 0.392
&2(Model B) 0.74

Pseudo R%QU =

Pseudo R7, describes the improvement in Model C over Model B in explain-
ing subject-to-subject variability in intercepts, and Pseudo R%Qv describes the
improvement in Model C over Model B in explaining subject-to-subject vari-
ability in slopes. Thus, the addition of instrument at Level Two has decreased
the between-person variability in mean performance anxiety before solos and
small ensembles by 10.6%, and it has decreased the between-person variability
in the effect of large ensembles on performance anxiety by 39.2%.

We could also run a “random intercepts” version of Model C, with no error term
in the equation for the slope at Level Two (and thus no covariance between
errors at Level Two as well):

o Level One:
Yi; = a; + b;LargeEns,;; + €;;

e Level Two:

a; = ag + a10rch; + u;
b; = By + B101rch,

where €;; ~ N(0,02) and u; ~ N(0,02).

The output below contains REML estimates of our 6 parameters from this
simplified version of Model C (which we’ll call Model C2):

#Model C2 (Run as random intercepts model)
model.c2 <- lmer(na ~ orch + large + orch:large +
(11id), data = music)

## Groups  Name Variance Std.Dev.
##  id (Intercept) 5.13 2.27
## Residual 21.88 4.68

## Number of Level Two groups = 37

## Estimate Std. Error t value
## (Intercept) 15.9026 0.6187 25.703
## orch 1.7100 0.9131 1.873
## large -0.8918 0.8415 -1.060

## orch:large -1.4650 1.0880 -1.347
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df AIC
model.c 8 3003
model.c2 6 2999

df BIC
model.c 8 3037
model.c2 6 3025

Note that parameter estimates for the remaining 6 fixed effects and variance
components closely mirror the corresponding parameter estimates from Model
C. In fact, removing the error term on the slope has improved (reduced) both
the AIC and BIC measures of overall model performance. Instead of assuming
that the large ensemble effects, after accounting for instrument played, vary by
individual, we are assuming that large ensemble effect is fixed across subjects.
It is not unusual to run a two-level model like this, with an error term on the
intercept equation to account for subject-to-subject differences, but with no
error terms on other Level Two equations unless there is an a priori reason to
allow effects to vary by subject or if the model performs better after building
in those additional error terms.

8.8 Adding Further Covariates

Recall that we are particularly interested in this study in Level Two covariates—
those subject-specific variables that provide insight into why individuals react
differently in anxiety-inducing situations. In Section 8.3, we saw evidence that
subjects with higher baseline levels of negative emotionality tend to have higher
performance anxiety levels prior to performances. Thus, in our next step in
model building, we will add negative emotionality as a Level Two predictor to
Model C. With this addition, our new model can be expressed as a system of
Level One and Level Two models:

e Level One:

Yi; = a; + b;LargeEns;; + €;;

o Level Two:
a; = o + a1 Orch; + aoMPQnem; + u;

b; = Bo + B10rch; + f2MPQnem,; + v;,

or as a composite model:
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Yi; = [ + @1 0rch; + o MPQnem; + ﬁoLargeEnsij

+ 510rChiLargeEnSij_ + BQMPQnemiLargeEnsij}
+ [u; 4+ viLargeEns,; + €;]

where error terms are defined as in Model C.

From the R output below, we see that, as our exploratory analyses suggested,
subjects with higher baseline levels of stress reaction, alienation, and aggression
(as measured by the MPQ negative emotionality scale) had significantly higher
levels of performance anxiety before solos and small ensembles (t=3.893).
They also had somewhat greater differences between large ensembles and
other performance types, controlling for instrument (t=-0.575), although this
interaction was not statistically significant.

# Model D (Add negative emotionality as second L2 cowvariate)
model.d <- lmer(na ~ orch + mpgnem + large + orch:large +
mpgnem:large + (large | id), data = music)

## Groups  Name Variance Std.Dev. Corr
## id (Intercept) 3.286 1.813

## large 0.557 0.746 -0.38
## Residual 21.811 4.670

## Number of Level Two groups = 37

#H# Estimate Std. Error t value
## (Intercept) 11.56801 1.22057 9.4775
## orch 1.00069 0.81713 1.2246
## mpgnem 0.14823 0.03808 3.8925
## large -0.28019 1.83412 -0.1528
## orch:large  -0.94927 1.10620 -0.8581
## mpgnem:large -0.03018 0.05246 -0.5753

8.8.1 Interpretation of Parameter Estimates

Compared to Model C, the directions of the effects of instrument and per-
formance type are consistent, but the effect sizes and levels of significance
are reduced because of the relative importance of the negative emotionality
term. Interpretations will also change slightly to acknowledge that we have
controlled for a covariate. In addition, interpretations of fixed effects involving
negative emotionality must acknowledge that this covariate is a continuous
measure and not binary like instrument and performance type:
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e G = 11.57. The estimated mean performance anxiety for solos and small
ensembles (large=0) is 11.57 for keyboard players and vocalists (orch=0)
with negative emotionality of 0 at baseline (mpgnem=0). Since the minimum
negative emotionality score in this study was 11, this interpretation, while
technically correct, is not practically meaningful.

e &3 = 1.00. Orchestral instrument players have an estimated mean anxiety
level before solos and small ensembles which is 1.00 point higher than
keyboardists and vocalists, controlling for the effects of baseline negative
emotionality.

e &9 = 0.15. A one point increase in baseline negative emotionality is associated
with an estimated 0.15 mean increase in anxiety levels before solos and small
ensembles, after controlling for instrument.

o BO = —0.28. Keyboard players and vocalists (orch=0) with baseline negative
emotionality levels of 0 (mpgnem=0) have an estimated mean decrease in
anxiety level of 0.28 points before large ensemble performances compared to
other performance types.

e (1 =—0.95. After accounting for baseline negative emotionality, orchestral
instrument players have an estimated mean anxiety level before solos and
small ensembles which is 1.00 point higher than keyboardists and vocalists,
while the mean anxiety of orchestral players is only .05 points higher before
large ensembles (a difference of .95 points).

D 32 = —0.03. After accounting for instrument, a one-point increase in baseline
negative emotionality is associated with an estimated 0.15 mean increase in
anxiety levels before solos and small ensembles, but only an estimated 0.12
increase before large ensembles (a difference of .03 points).

Some of the detail in these parameter interpretations can be tricky—describing
interaction terms, deciding if a covariate must be fixed at 0 or merely held
constant, etc. Often it helps to write out models for special cases to isolate
the effects of specific fixed effects. We will consider a few parameter estimates
from above and see why the interpretations are written as they are.

e @;. For solos and small ensembles (LargeEns=0), the following equations
describe the fixed effects portion of the composite model for negative affect
score for vocalists and keyboardists (Orch=0) and orchestral instrumentalists
(Orch=1):

Orch =0:
Yi; = ap + coMPQnem;,
Orch =1:

Yi; = (ap + a1) + aaMPQnem,

Regardless of the subjects’ baseline negative emotionality (MPQnem), &; repre-
sents the estimated difference in performance anxiety between those playing
orchestral instruments and others. This interpretation, however, only holds for
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solos and small ensembles. For large ensembles, the difference between those
playing orchestral instruments and others is actually given by &; + 1, holding
MPQnem constant (Show!).

o BO. Because LargeEns interacts with both Orch and MPQnem in Model C, BO
only describes the estimated difference between large ensembles and other
performance types when both Orch=0 and MPQnem=0, thus removing the
effects of the interaction terms. If, for instance, Orch=1 and MPQnem=20, then
the AdifferAence between large ensembles and other performance types is given
by Bo + f1 + 200..

e [31. As with &1, we consider equations describing the fixed effects portion of
the composite model for negative affect score for vocalists and keyboardists
(Orch=0) and orchestral instrumentalists (Orch=1), except here we leave
LargeEns as an unknown rather than restricting the model to solos and small
ensembles:

Orch =0:
Yi; = ap + a2MPQnem; + SyLargeEns,;
+ ﬁQMPQnemiLargeEnsij
Orch =1:
Yij = (a0 + a1) + agMPQnem; + (8o + 81 )LargeEns,;
+ S2MPQnem,LargeEns, ;

As long as baseline negative emotionality is held constant (at any level, not
just 0), then B; represents the estimated difference in the large ensemble effect
between those playing orchestral instruments and others.

8.8.2 Model Comparisons

At this point, we might ask: do the two extra fixed effects terms in Model D
provide a significant improvement over Model C? Nested models such as these
can be tested using a likelihood ratio test (drop in deviance test), as we've
used in Sections 4.4.4 and 6.5.4 with certain generalized linear models. Since
we are comparing models nested in their fixed effects, we use full maximum
likelihood methods to estimate model parameters, as discussed in Section 8.5.4.
As expected, the likelihood is larger (and the log-likelihood is less negative)
under the larger model (Model D); our test statistic (14.734) is then -2 times
the difference in log-likelihood between Models C and D. Comparing the test
statistic to a chi-square distribution with 2 degrees of freedom (signifying the
number of additional terms in Model D), we obtain a p-value of .0006. Thus,
Model D significantly outperforms Model C.
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# anova () automatically uses ML for LRT tests

drop_in_dev <- anova(model.d, model.c, test = "Chisq")
npar AIC BIC loglLik dev Chisq Df pval
model.c 8 3007 3041 -1496 2991 NA NA NA

model.d 10 2996 3039 -1488 2976 14.73 2 0.0006319

Two models, whether they are nested or not, can be compared using AIC and
BIC measures, which were first seen in Chapter 1 and later used in evaluating
generalized linear models. In this case, the AIC clearly favors Model D (2996.7)
over Model C (3007.3), whereas the BIC favors Model D (3038.8) only slightly
over Model C (3041.0) since the BIC imposes a stiffer penalty on additional
terms and additional model complexity. However, the likelihood ratio test is a
more reliable method for comparing nested models.

Finally, we note that Model D could be further improved by dropping the
negative emotionality by large ensemble interaction term. Not only is the
t-value (-0.575) associated with this term of low magnitude, but a likelihood
ratio test comparing Model D to a model without mpgnem:large produces an
insignificant p-value of 0.5534.

drop_in_dev <- anova(model.d, model.dl, test = "Chisq")

npar AIC BIC loglLik dev Chisq Df pval
model.d1 9 2995 3033 -1488 2977 NA NA NA
model.d 10 2996 3039 -1488 2976 0.3513 1 0.5534

8.9 Centering Covariates

As we observed above, the addition of baseline negative emotionality in Model
D did not always produce sensible interpretations of fixed effects. It makes
no sense to draw conclusions about performance anxiety levels for subjects
with MPQNEM scores of 0 at baseline (as in BO), since the minimum NEM
composite score among subjects in this study was 11. In order to produce
more meaningful interpretations of parameter estimates and often more stable
parameter estimates, it is often wise to center explanatory variables. Centering
involves subtracting a fixed value from each observation, where the fixed value
represents a meaningful anchor value (e.g., last grade completed is 12; GPA
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is 3.0). Often, when there’s no pre-defined anchor value, the mean is used to
represent a typical case. With this in mind, we can create a new variable

centeredbaselineNEM = cmpgnem
= mpqnem - mean(mpqgnem)

= mpqnem — 31.63

and replace baseline NEM in Model D with its centered version to create Model
E:

# Model E (Center baseline NEM in Model D)
model.e <- lmer(na ~ orch + cmpgnem + large + orch:large +
cmpgnem: large + (large | id), REML = T, data = music)

## Groups  Name Variance Std.Dev. Corr
##  id (Intercept) 3.286 1.813

## large 0.557 0.746 -0.38
## Residual 21.811 4.670

## Number of Level Two groups = 37

#it Estimate Std. Error t value
## (Intercept) 16.25679 0.54756 29.6893
## orch 1.00069 0.81713 1.2246
## cmpgnem 0.14823 0.03808 3.8925
## large -1.23484 0.84320 -1.4645
## orch:large -0.94927 1.10620 -0.8581
## cmpgnem:large -0.03018 0.05246 -0.5753

As you compare Model D to Model E, you should notice that only two
things change — &g and Bo. All other parameter estimates—both fixed effects
and variance components—remain identical; the basic model is essentially
unchanged as well as the amount of variability in anxiety levels explained by the
model. &g and ,@’0 are the only two parameter estimates whose interpretations
in Model D refer to a specific level of baseline NEM. In fact, the interpretations
that held true where NEM=0 (which isn’t possible) now hold true for cmpgnem=0
or when NEM is at its average value of 31.63, which is possible and quite
meaningful. Now, parameter estimates using centered baseline NEM in Model
E change in value from Model D and produce more useful interpretations:

e G = 16.26. The estimated mean performance anxiety for solos and small
ensembles (large=0) is 16.26 for keyboard players and vocalists (orch=0)
with an average level of negative emotionality at baseline (mpgnem=31.63).
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. BO = —1.23. Keyboard players and vocalists (orch=0) with an average level of
baseline negative emotionality levels (mpgnem=31.63) have an estimated mean
decrease in anxiety level of 1.23 points before large ensemble performances
compared to other performance types.

8.10 A Final Model for Music Performance Anxiety

We now begin iterating toward a “final model” for these data, on which we
will base conclusions. Typical features of a “final multilevel model” include:

o fixed effects allow one to address primary research questions
o fixed effects control for important covariates at all levels

e potential interactions have been investigated

e variables are centered where interpretations can be enhanced
e important variance components have been included

e unnecessary terms have been removed

o the model tells a “persuasive story parsimoniously”

Although the process of reporting and writing up research results often de-
mands the selection of a sensible final model, it’s important to realize that (a)
statisticians typically will examine and consider an entire taxonomy of models
when formulating conclusions, and (b) different statisticians sometimes select
different models as their “final model” for the same set of data. Choice of a
“final model” depends on many factors, such as primary research questions,
purpose of modeling, tradeoff between parsimony and quality of fitted model,
underlying assumptions, etc. So you should be able to defend any final model
you select, but you should not feel pressured to find the one and only “correct
model”; although most good models will lead to similar conclusions.

As we’ve done in previous sections, we can use (a) t-statistics for individual
fixed effects when considering adding a single term to an existing model, (b)
likelihood ratio tests for comparing nested models which differ by more than
one parameter, and (c) model performance measures such as AIC and BIC to
compare non-nested models. Below we offer one possible final model for this
data—Model F:

e Level One:
Yij=a; + bipreviousij + ¢;students;; + dl-juriedij + el-publicij + fisolosj + €5

e Level Two:
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a; = g + aympgpem,; + agmpqabi + azorch; + agmpqnem; + u;

bi = Bo + vi,
Ci = Yo 1 Wy,
di = do + x4,
e; = €0+ Y,

fi = Co + ¢impqnem; + z;,

where previous is the number of previous diary entries filled out by that
individual (diary-1); students, juried, and public are indicator variables
created from the audience categorical variable (so that “Instructor” is the
reference level in this model); and, solo is 1 if the performance was a solo and
0 if the performance was either a small or large ensemble.

In addition, we assume the following variance-covariance structure at Level
Two:

U; 0 o2
V; 0 Ouo 012}
2
wW; 0 Ouw Ovw Ou
~ N , 2
Ty 0 Ouz Oyx Owz (o
2
Yi 0 Ouy Ovy Owy Ogzxy Uy
2
Zi 0 Ouz Ovz Owz Ozz Oyz O

Being able to write out these mammoth variance-covariance matrices is less
important than recognizing the number of variance components that must be
estimated by our intended model. In this case, we must use likelihood-based
methods to obtain estimates for 6 variance terms and 15 correlation terms at
Level Two, along with 1 variance term at Level One. Note that the number
of correlation terms is equal to the number of unique pairs among Level Two
random effects. In later sections we will consider ways to reduce the number
of variance components in cases where the number of terms is exploding, or
the statistical software is struggling to simultaneously find estimates for all
model parameters to maximize the likelihood function.

From the signs of fixed effects estimates in the R output below, we see that per-
formance anxiety is higher when a musician is performing in front of students,
a jury, or the general public rather than their instructor, and it is lower for each
additional diary the musician previously filled out. In addition, musicians with
lower levels of positive emotionality and higher levels of absorption tend to
experience greater performance anxiety, and those who play orchestral instru-
ments experience more performance anxiety than those who play keyboards or
sing. Addressing the researchers’ primary hypothesis, after controlling for all
these factors, we have significant evidence that musicians with higher levels
of negative emotionality experience higher levels of performance anxiety, and
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that this association is even more pronounced when musicians are performing
solos rather than as part of an ensemble group.

Here are how a couple of key fixed effects would be interpreted in this final
model:

e &y = 0.11. A one-point increase in baseline level of negative emotionality
is associated with an estimated 0.11 mean increase in performance anxiety
for musicians performing in an ensemble group (solo=0), after controlling
for previous diary entries, audience, positive emotionality, absorption, and
instrument.

o CAl = 0.08. When musicians play solos, a one-point increase in baseline level
of negative emotionality is associated with an estimated 0.19 mean increase
in performance anxiety, 0.08 points (73%) higher than musicians playing in
ensemble groups, controlling for the effects of previous diary entries, audience,
positive emotionality, absorption, and instrument.

# Model F (One - of many - reasonable final models)

model.f <- lmer(na ~ previous + students + juried +
public + solo + mpgpem + mpgab + orch + mpgnem +
mpgnem:solo + (previous + students + juried +
public + solo | id), REML = T, data = music)

## Groups Name Variance Std.Dev. Corr

## id (Intercept) 14.4802 3.805

#i# previous 0.0707 0.266 -0.65

## students 8.2151 2.866 -0.63 0.00
#H juried 18.3177 4.280 -0.64 -0.12
#i# public 12.8094 3.579 -0.83 0.33
#i# solo 0.7665 0.876 -0.67 0.47
## Residual 15.2844 3.910

##

##

#i

#i#

## 0.84

#* 0.66 0.58
## 0.49 0.21 0.90
#it

## Number of Level Two groups = 37

## Estimate Std. Error t value
## (Intercept) 8.36883 1.91369 4.3731
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## previous -0.14303 0.06247 -2.2895
## students 3.61115 0.76796 4.7022
## juried 4.07332 1.03130 3.9497
## public 3.06453 0.89274 3.4327
## solo 0.51647 1.39635 0.3699
## mpgpem -0.08312 0.02408 -3.4524
## mpqgab 0.20377 0.04740 4.2986
## orch 1.53138 0.58384 2.6230
## mpgnem 0.11465 0.03591 3.1930
## solo:mpgnem 0.08296 0.04158 1.9951

8.11 Modeling Multilevel Structure: Is It Necessary?

Before going too much further, we should really consider if this multilevel
structure has gained us anything over linear least squares regression. Sure,
multilevel modeling seems more faithful to the inherent structure of the data—
performances from the same musician should be more highly correlated than
performances from different musicians—but do our conclusions change in a
practical sense? Some authors have expressed doubts. For instance Robert
Bickel, in his 2007 book, states, “When comparing OLS and multilevel re-
gression results, we may find that differences among coefficient values are
inconsequential, and tests of significance may lead to the same decisions. A
great deal of effort seems to have yielded precious little gain” [Bickel, 2007].
Others, especially economists, advocate simply accounting for the effect of
different Level Two observational units (like musicians) with a sequence of
indicator variables for those observational units. We contend that (1) fitting
multilevel models is a small extension of LLSR regression that is not that
difficult to conceptualize and fit, especially with the software available today,
and (2) using multilevel models to remain faithful to the data structure can
lead to different coefficient estimates and often leads to different (and larger)
standard error estimates and thus smaller test statistics. Hopefully you've seen
evidence of (1) in this chapter already; the rest of this section introduces two
small examples to help illustrate (2).

Figure 8.15 is based on a synthetic data set containing 10 observations from each
of 4 subjects. For each subject, the relationship between previous performances
and negative affect is linear and negative, with slope approximately -0.5
but different intercepts. The multilevel model (a random intercepts model
as described in Section 8.7) shows an overall relationship (the dashed black
line) that’s consistent with the individual subjects—slope around -0.5 with
an intercept that appears to average the 4 subjects. Fitting a LLSR model,
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FIGURE 8.15: Hypothetical data from 4 subjects relating number of previous
performances to negative affect. The dashed black line depicts the overall
relationship between previous performances and negative affect as determined
by a multilevel model, while the solid black line depicts the overall relationship
as determined by an LLSR regression model.

however, produces an overall relationship (the solid black line) that is strongly
positive. In this case, by naively fitting the 40 observations as if they were all
independent and ignoring subject effects, the LLSR analysis has gotten the
estimated slope of the overall relationship backwards, producing a continuous
data version of Simpson’s Paradox.

Our second example is based upon Model C from Section 8.7.3, with single
binary predictors at both Level One and Level Two. Using the estimated fixed
effects coefficients and variance components from random effects produced
in Model C, we generated 1000 sets of simulated data. Each set of simulated
data contained 497 observations from 37 subjects just like the original data,
with relationships between negative affect and large ensembles and orchestral
instruments (along with associated variability) governed by the estimated
parameters from Model C. Each set of simulated data was used to fit both a
multilevel model and a linear least squares regression model, and the estimated
fixed effects (&g, a1, By, and Bl) and their standard errors were saved. Figure
8.16 shows density plots comparing the 1000 estimated values for each fixed
effect from the two modeling approaches; in general, estimates from multilevel
modeling and LLSR tend to agree pretty well, without noticeable bias. Based
on coefficient estimates alone, there appears to be no reason to favor multilevel
modeling over LLSR in this example, but Figure 8.17 tells a different story.
Figure 8.17 shows density plots comparing the 1000 estimated standard errors
associated with each fixed effect from the two modeling approaches; in general,
standard errors are markedly larger with multilevel modeling than LLSR. This
is not unusual, since LLSR, assumes all 497 observations are independent, while
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FIGURE 8.16: Density plots of parameter estimates for the four fixed effects
of Model C under both a multilevel model and linear least squares regression.
1000 sets of simulated data for the 37 subjects in our study were produced using
estimated fixed and random effects from Model C. For each set of simulated
data, estimates of (a) ag, (b) aq, (¢) Bo, and (d) 1 were obtained using both
a multilevel and an LLSR model. Each plot then shows a density plot for the
1000 estimates of the corresponding fixed effect using multilevel modeling vs. a
similar density plot for the 1000 estimates using LLSR.
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FIGURE 8.17: Density plots of standard errors of parameter estimates for
the four fixed effects of Model C under both a multilevel model and linear least
squares regression. 1000 sets of simulated data for the 37 subjects in our study
were produced using estimated fixed and random effects from Model C. For
each set of simulated data, estimates of (a) SE(ag), (b) SE(a1), (¢) SE(B),
and (d) SE(B1) were obtained using both a multilevel and an LLSR model.
Each plot then shows a density plot for the 1000 estimates of the corresponding
standard error term using multilevel modeling vs. a similar density plot for
the 1000 estimates using LLSR.
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multilevel modeling acknowledges that, with correlated data within subject,
there are fewer than 497 independent pieces of data. Therefore, linear least
squares regression can overstate precision, producing t-statistics for each fixed
effect that tend to be larger than they should be; the number of significant
results in LLSR are then too great and not reflective of the true structure of
the data.

8.12 Notes on Using R (optional)

Initial examination of the data for Case Study 8.2 shows a couple of features
that must be noted. First, there are 37 unique study participants, but they
are not numbered successively from 1 to 43. The majority of participants filled
out 15 diaries, but several filled out fewer (with a minimum of 2); as with
participant IDs, diary numbers within participant are not always successively
numbered. Finally, missing data is not an issue in this data set, since researchers
had already removed participants with only 1 diary entry and performances
for which the type was not recorded (of which there were 11).

The R code below runs the initial multilevel model in Section 8.5.5. Multilevel
model notation in R is based on the composite model formulation. Here, the
response variable is na, while orch, large, and orch:large represent the
fixed effects aq, By, and B, along with the intercept ag which is included
automatically. Note that a colon is used to denote an interaction between two
variables. Error terms and their associated variance components are specified
in (largel|id), which is equivalent to (1+largel|id). This specifies two error
terms at Level Two (the id level): one corresponding to the intercept (u;) and
one corresponding to the large ensemble effect (v;); the multilevel model will
then automatically include a variance for each error term in addition to the
covariance between the two error terms. A variance associated with a Level
One error term is also automatically included in the multilevel model. Note
that there are ways to override the automatic inclusion of certain variance
components; for example, (0+largelid) would not include an error term for
the intercept (and therefore no covariance term at Level Two either).

model0 <- lmer(na ~ orch + large + orch:large +
(large | id), REML = T, data = music)
summary (model0)
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8.13 Exercises
8.13.1 Conceptual Exercises

1. Housing prices. Brown and Uyar [2004] describe “A Hierarchical
Linear Model Approach for Assessing the Effects of House and
Neighborhood Characteristics on Housing Prices”. Based on the title
of their paper: (a) give the observational units at Level One and
Level Two, and (b) list potential explanatory variables at both Level
One and Level Two.

2. In the preceding problem, why can’t we assume all houses in the
data set are independent? What would be the potential implications
to our analysis of assuming independence among houses?

3. In the preceding problem, for each of the following sets of predictors:
(a) write out the two-level model for predicting housing prices, (b)
write out the corresponding composite model, and (c) determine
how many model parameters (fixed effects and variance components)
must be estimated.

e Square footage, number of bedrooms

e Median neighborhood income, rating of neighborhood schools

e Square footage, number of bedrooms, age of house, median
neighborhood housing price

e Square footage, median neighborhood income, rating of neigh-
borhood schools, median neighborhood housing price

4. Music performance anxiety. Describe a situation in which the
two plots in Figure 8.7 might tell different stories.

5. Explain the difference between a; in Equation (8.2) and a; in Equa-
tion (8.4).

6. Why is the contour plot for multivariate normal density in Figure
8.12(b) tilted from southwest to northeast, but the contour plot in
Figure 8.12(a) is not tilted?

7. In Table 8.3, note that the standard errors associated with estimated
coefficients under independence are lower than standard errors under
alternative analysis methods. Why is that often the case?

8. Why is Model A (Section 8.6.2) sometimes called the “uncondi-
tional means model”? Why is it also sometimes called the “random
intercepts model”? Are these two labels consistent with each other?
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10.

11.

12.

13.

14.

15.

16.
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Consider adding an indicator variable in Model B (Section 8.7.1) for
Small Ensemble performances.

e Write out the two-level model for performance anxiety,

e Write out the corresponding composite model,

o Determine how many model parameters (fixed effects and vari-
ance components) must be estimated, and

e Explain how the interpretation for the coefficient in front of
Large Ensembles would change.

Give a short rule in your own words describing when an interpretation
of an estimated coefficient should “hold constant” another covariate
or “set to 0” that covariate (see Section 8.8.1).

The interpretation of &; in Section 8.8.1 claims that, “This interpre-
tation, however, only holds for solos and small ensembles. For large
ensembles, the difference between those playing orchestral instru-
ments and others is actually given by &1 + 31, holding MPQNEM
constant.” Show that this claim is true.

Explain how the interpretations of the following parameter estimates
change (or don’t change) as we change our model:

e &g from Model A to Bto CtoD to E
-Bl from Model B to C to D to E

e &1 from Model C to D to E

031 from Model C to D to E

e 5, from Model A to Bto CtoD to E
e 5, from Model B to C to D to E

When moving from Model B to Model C in Section 8.7.3, 52 increases
slightly. Why might this have occurred?

Interpret other estimated parameters from Model F beyond those
interpreted in Section 8.10: &g, dq, &s, [30, Yo, CO, Puwz, 02, 62, and

52
0;.

Explain Figure 8.15 in your own words. Why would LLSR produce
a misleading analysis in this case, but multilevel models would not?

Summarize Figures 8.16 and 8.17 in your own words.

8.13.2 Guided Exercises

Music performance joy. In this chapter, we studied models for
predicting music performance anxiety, as measured by the negative
affect scale from the PANAS instrument. Now we will examine mod-
els for predicting the happiness of musicians prior to performances,
as measured by the positive affect scale from the PANAS instrument.
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To begin, run the following models:

e Model A = unconditional means model

e Model B = indicator for instructor audience type and indicator
for student audience type at Level One; no Level Two predictors

e Model C = indicator for instructor audience type and indicator
for student audience type at Level One; centered MPQ absorp-
tion subscale as Level Two predictor for intercept and all slope
terms

e Model D = indicator for instructor audience type and indicator
for student audience type at Level One; centered MPQ absorp-
tion subscale and a male indicator as Level Two predictors for
intercept and all slope terms

1. Perform an exploratory data analysis by comparing positive
affect (happiness) to Level One and Level Two covariates using
appropriate graphs. Comment on interesting trends, supporting
your comments with appropriate summary statistics.

2. Report estimated fixed effects and variance components from
Model A, using proper notation from this chapter (no inter-
pretations required). Also report and interpret an intraclass
correlation coefficient.

3. Report estimated fixed effects and variance components from
Model B, using proper notation from this chapter. Interpret
your MLE estimates for g (the intercept), 41 (the instructor
indicator), and &, (the Level Two standard deviation for the
intercept). Also report and interpret an appropriate pseudo
R-squared value.

4. Write out Model C, using both separate Level One and Level
Two models as well as a composite model. Be sure to express
distributions for error terms. How many parameters must be
estimated in Model C?

5. Report and interpret the following parameter estimates from
Model C: &g, &1, Yo, 31, 6w, Oy, and Py, . Interpretations for vari-
ance components should be done in terms of standard deviations
and correlation coefficients.

6. Report and interpret the same parameter estimates listed above
from Model D. In each case, the new interpretation should
involve a small modification of your interpretation from Model
C. Use underlines or highlights to denote the part of the Model
D interpretation that differs from the Model C interpretation.

7. Also report and interpret the following parameter estimates
from Model D: &9 and ﬁz.

8. Use a drop in deviance statistic (likelihood ratio test) to compare
Model C vs. Model D. Give a test statistic and p-value, then state
a conclusion. Also compare Models C and D with appropriate
pseudo R-squared value(s) and with AIC and BIC statistics.
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8.13.3 Open-Ended Exercises

1. Political ambiguity. Chapp et al. [2018] explored 2014 congres-
sional candidates’ ambiguity on political issues in their paper, Going
Vague: Ambiguity and Avoidance in Online Political Messaging. They
hand-coded a random sample of 2012 congressional candidates’ web-
sites, assigning an ambiguity score. A total of 870 websites from
2014 were then automatically scored using Wordscores, a program
designed for political textual analysis. In their paper, they fit a
multilevel model for candidates’ ambiguities with predictors at both
the candidate and district levels. Some of their hypotheses include
that:

e “when incumbents do hazard issue statements, these statements
will be marked by a higher degree of clarity.” (Hypothesis 1b)
« “ideological distance [from district residents] will be associated

with greater ambiguity.” (Hypothesis 2a)

« “controlling for ideological distance, ideological extremity [of the
candidate] should correspond to less ambiguity.” (Hypothesis
2b)

« “more variance in attitudes [among district residents] will corre-
spond to a higher degree of ambiguity in rhetoric” (Hypothesis
3a)

« “a more heterogeneous mix of subgroups [among district resi-
dents] will also correspond to a higher degree of ambiguity in
rhetoric” (Hypothesis 3b)

Their data can be found in ambiguity.csv. Variables of interest
include:

e ambiguity = assigned ambiguity score. Higher scores indicate
greater clarity (less ambiguity)

e democrat = 1 if a Democrat, 0 otherwise (Republican)

e incumbent = 1 if an incumbent, 0 otherwise

e ideology = a measure of the candidate’s left-right orientation.
Higher (positive) scores indicate more conservative candidates
and lower (negative) scores indicate more liberal candidates.

emismatch = the distance between the candidate’s ideology and
the district’s ideology (candidate ideology scores were regressed
against district ideology scores; mismatch values represent the
absolute value of the residual associated with each candidate)

«distID = the congressional district’s unique ID

edistLean = the district’s political leaning. Higher scores imply
more conservative districts.

e attHeterogeneity = a measure of the variability of ideolo-
gies within the district. Higher scores imply more attitudinal
heterogeneity among voters.
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e demHeterogeneity = a measure of the demographic variabil-
ity within the district. Higher scores imply more demographic
heterogeneity among voters.

With this in mind, fit your own models to address these hypotheses
from Chapp et al. [2018]. Be sure to use a two-level structure to
account for variables at both the candidate and district levels.

2. Airbnb in Chicago. Trinh and Ameri [2018] collected data on 1561
Airbnb listings in Chicago from August 2016, and then they merged
in information from the neighborhood (out of 43 in Chicago) where
the listing was located. We can examine traits that are associated
with listings that command a higher price. Conduct an EDA; build a
multilevel model, and interpret model coefficients to answer questions
such as: What are characteristics of a higher priced listing? Are the
most influential traits associated with individual listings or entire
neighborhoods? Are there intriguing interactions where the effect of
one variable depends on levels of another?

The following variables can be found in airbnb.csv or derived from
the variables found there:

eoverall_satisfaction = rating on a 0-5 scale.

esatisfaction = 1 if overall_satisfaction is 5, 0 otherwise

eprice = price for one night (in dollars)

ereviews = number of reviews posted

e room_type = Entire home/apt, Private room, or Shared room

e accommodates = number of people the unit can hold

e bedrooms = number of bedrooms

eminstay = minimum length of stay (in days)

eneighborhood = neighborhood where unit is located (1 of 43)

edistrict = district where unit is located (1 of 9)

e WalkScore = quality of the neighborhood for walking (0-100)

e TransitScore = quality of the neighborhood for public transit
(0-100)

e BikeScore = quality of the neighborhood for biking (0-100)

e PctBlack = proportion of black residents in a neighborhood

eHighBlack = 1 if PctBlack above .60, 0 otherwise

3. Project 5183. The Colorado Rockies, a Major League Baseball
team, instigated a radical experiment on June 20th, 2012. Hopelessly
out of contention for the playoffs and struggling again with their
pitching, the Rockies decided to limit their starting pitchers to 75
pitches from June 20th until the end of the year with the hope of
improving a struggling starting rotation, teaching pitchers how to
pitch to contact (which results in low pitch counts), and at the same
time trying to conserve young arms. Data has shown that, as a game
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progresses, fatigue becomes a big factor in a pitcher’s performance; if
a pitcher has to tweak his mechanics to try to make up for a fatigued
body, injuries can often occur. In addition, pitchers often struggle
as they begin facing the same batters over again later in games. The
Rockies called their experiment “Project 5183” to acknowledge the
altitude at Coors Field, their home ballpark, and the havoc that
high altitude can wreak on pitchers.

A team of students collected 2012 data on Rockies pitchers from
FanGraphs to evaluate Project 5183 [Sturtz et al., 2013]. In a suc-
cessful experiment, Colorado pitchers on a strict limit of 75 pitches
would throw more strikes and yet record fewer strikeouts (pitching
to contact rather than throwing more pitches to attempt to strike
batters out). Different theories explain whether these pitchers would
throw harder (since they don’t have to save themselves) or throw
slower (in order to throw more strikes). But the end result the
Rockies hoped to observe was that their pitchers pitch better (allow
fewer runs to the opponent) with a pitch limit.

The data set FinalRockiesdata.csv contains information for 7
starting pitchers who started at least one game before June 20th
(without a pitch limit) and at least one game after June 20th (with
a limit of 75 pitches). Key response variables include:

e vFA = average fastball velocity

«K.9 = strikeouts per nine innings

¢ ERA = earned runs per nine innings
«Pitpct = percentage of strikes thrown

The primary explanatory variable of interest is PCL (an indicator
variable for if a pitch count limit is in effect). Other potential
confounding variables that may be important to control for include
Coors (whether or not the game was played in Coors Field, where
more runs are often scored because of the high altitude and thin air)
and Age of the pitcher.

Write a short report summarizing the results of Project 5183. (You
may notice a few variance components with unusual estimates, such
as an estimated variance of 0 or an estimated correlation of 1. These
estimates have encountered boundary constraints; we will learn how
to deal with these situations in Section 10.5. For now ignore these
variance components; the fixed effects coefficients are still reliable
and their interpretations valid.)

4. Replicate the Sadler and Miller paper. Try to replicate Models
1 and 2 presented in Table 2 of Sadler and Miller [2010]. We expect
small differences in parameter estimates, since they use SAS (with
an unstructured covariance structure) instead of R.
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e Do the parameter estimates, SEs, AIC, and variance explained
compare well?

e Explain ways in which the model equations from page 284 of
Sadler and Miller do not align with Model 2 from Table 2, or
with the manner in which we write out two-level models.
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